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A water bridge refers to an experimental “flexible cable” made up of pure de-ionized water, which can hang
across two supports maintained with a sufficiently large voltage difference. The resulting electric fields within
the de-ionized water flexible cable maintain a tension that sustains the water against the downward force of
gravity. A detailed calculation of the water bridge tension will be provided in terms of the Maxwell pressure
tensor in a dielectric fluid medium. General properties of the dielectric liquid pressure tensor are discussed
along with unusual features of dielectric fluid Bernoulli flows in an electric field. The “frictionless” Bernoulli
flow is closely analogous to that of a superfluid.
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I. INTRODUCTION

Recent and older observations �1–3� have been made of
water bridges stretched across supports that are maintained at
large voltage differences. A water bridge is a “flexible cable”
made up of pure de-ionized water that has an electric field E
in virtue of an applied voltage across the supports at the ends
of the fluid cable. Previously to this work, it was not fully
understood what forces hold up the water bridge against the
force of gravity. It will here be shown that the forces respon-
sible for holding up the water bridge follow from the Max-
well electric field pressure tensor in dielectric polar fluids. In
particular, the water bridge viewed as a flexible cable has an
electric field induced tension sufficiently large so as to ex-
plain the water bridge support. The need for de-ionized water
in the experiment is evidently due prohibiting conductivity
effects from masking the insulating dielectric effects. In dis-
cussing the general theory of the pressure tensor for isotropic
dielectric polar liquids, such as water, hydrostatics, and adia-
batic hydrodynamics, shall also be explored.

In Sec. II the thermodynamic laws applied to a fluid polar
dielectric are described in detail. It is shown that in the pres-
ence of an electric field, there are two different thermody-

namic pressures, P and P̃. These turn out to be eigenvalues
of the full pressure tensor as discussed in Sec. III. If an
infinitesimal surface area �A� has a normal perpendicular to
the electric field lines, then the pressure force is P�A�. If an
infinitesimal surface area �A� has a normal parallel to the

electric field lines, then the pressure force is P̃�A�. It is
shown that these results completely characterize the pressure
tensor.

In Sec. IV, we compute the tension in a fluid dielectric
cylinder. Although there has been considerable previous
work on this subject �4–8� and related subjects �9�, the basic
physics of that calculation is simply explained. Consider a
simple cylinder of length L and cross sectional area A
=�R2. Suppose that a spatially uniform electric field E exists

in a direction parallel to the cylinder axis. Since the tangen-
tial component of the electric field is continuous, the electric
field inside the cylinder is the same as the electric field out-
side the cylinder. On the other hand, the displacement field
D=�E is discontinuous at the end points of the cylinder; i.e.,
the ends of the cylinder have a charge density of �� wherein

4�� = �D = �� − 1�E = 4�
Q

A
. �1�

The end of the cylinder that is at the tail of the electric field
vector has charge +Q, while the end of the cylinder that is at
the arrow of the electric field vector has charge −Q. The
tension in the cylinder is then evidently given by �=QE that
in virtue of Eq. �1� reads

�

A
= �� − 1

4�
�E2. �2�

In what follows, the stress �Eq. �2�� will be rigorously de-
rived from the Maxwell pressure tensor within the cylinder.
The ratio of the tension to cylinder weight, Mg=�ALg,
obeys

�

Mg
= � �� − 1�E2

4��gL
� , �3�

wherein � and L represent the mass density and the length,
respectively, of the cylinder. Although we have employed
free end boundary conditions to the cylinder, the tension � is
a local stress quantity independent of global boundary con-
ditions. In Sec. V, we exhibit a plot of the hanging water
bridge flexible cable for experimental values of the param-
eters in Eq. �3� and find the agreement between theory and
experiment to be satisfactory.

In Sec. VI, the hydrostatics of the dielectric fluid in an
electric field is explored. The crucial quantity of interest is
the mean isothermal polarization per molecule that obeys
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p = 	TE ⇒ 4�	T = m� ��

��
	

T,E
, �4�

wherein m is the mass of a single molecule and 	T is the
isothermal polarizability. For the water liquid and vapor
phases, the molecular polarizabilities obey 	T

gas
	T
liquid.

Fluid dielectric films in strong electric fields adsorbed on
insulating walls tend to swell to a large thickness. In Sec.
VII, the theory of dielectric polar fluid Bernoulli flows in
strong electric fields is discussed. Together with the effect of
film thickening, it turns out that the film is capable of crawl-
ing up an insulating container wall against the force of grav-
ity and flow as in a siphon over the top of the wall and down
on the other side. In Sec. VIII, the role of Bernoulli flows in
forming the water bridges will be discussed. Analogies be-
tween dielectric polar liquid Bernoulli flow siphon oscilla-
tions and superfluid U-tube oscillations will be explored.
There is the ability of both water films in high electric fields
and superfluid films to climb walls against gravitational
forces and even to pass over the tops of these walls over to
the other side.

II. THERMODYNAMIC ARGUMENTS

Let f̃�� ,T ,D� represent the Helmholtz free energy per unit
volume for a dielectric fluid of mass density �, temperature
T, and Maxwell displacement field D,

df̃ = − sdT + �d� +
1

4�
E · dD , �5�

wherein s is the entropy per unit volume, � is the chemical
potential per unit mass, and E is the electric field. The ther-
modynamic pressure that follows from Eq. �5� is as follows:

P̃ = �� − f̃ ,

dP̃ = sdT + �d� −
1

4�
E · dD . �6�

On the other hand, one may employ the free energy,

f = f̃ −
1

4�
E · D ,

df = − sdT + �d� −
1

4�
D · dE , �7�

yielding the pressure

P = �� − f ,

dP = sdT + �d� +
1

4�
D · dE . �8�

The two different pressures obey

P = P̃ +
1

4�
E · D . �9�

For a dielectric fluid in an electric field, isotropy dictates that
D be parallel to E even if the detailed equations of state are

nonlinear, i.e., isotropy yields a free energy of the form

f��,T,E� 
 f��,T,E2� , �10�

so that Eqs. �7� and �10� imply

D = �E , �11�

wherein ��� ,T ,E2�=−8�� f�� ,T ,E2� /��E2�. Thus, the two
possible fluid pressures in Eq. �9� found from the principle of
virtual work obey

P̃ = P −
�

4�
E2. �12�

It may, at first glance, appear strange that there are two
physically different thermodynamic pressures in a dielectric
fluid subject to an electric field. However, the situation may
be clarified when it is realized that due to the electric field,
the pressure is in reality a tensor.

III. PRESSURE TENSOR

In order to compute the Maxwell pressure tensor in a fluid
dielectric, imagine that the fluid undergoes a strain wherein a
fluid particle at point r is sent to the new point r�. Such a
transformation induces a strained length scale ds2=dr� ·dr�
described by a metric tensor

ds2 = gij�r�dridrj . �13�

The pressure tensor Pij is then described in terms of the free
energy change due to a metric strain

�F =
1

2
� Pij�gijdV . �14�

The free energy variation is described by

�F = �� fdV =� �fdV +� f�dV . �15�

In detail, the volume element of the strained fluid is deter-
mined by g�r�=det�gij�r�� via

dV = �g�r�d3r ⇒ �dV = − 1
2gij�gijdV . �16�

Volume variational �16� together with mass conservation, in
turn, implies a mass density variation

�� = 1
2gij�gij� . �17�

Furthermore, the change in the magnitude of the electric field
is

�E2 = �gijEiEj . �18�

We then employ

�f = � � f

��
	

T,E2
�� + � � f

�E2	
T,�

�E2,

�f = ��� −
�

8�
�E2. �19�

In virtue of Eqs. �15�–�19�,
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�F =
1

2
� �gij�gij��� − f� −

�

4�
EiEj�dV . �20�

From Eqs. �8�, �14�, and �20� we have the final form �10,11�
for the pressure tensor

Pij = Pgij −
�

4�
EiEj . �21�

Alternatively, the pressure tensor is given by

Pij = P�ij −
�E2

4�
ninj with n =

E

E
,

Pij = P�ij + �P̃ − P�ninj , �22�

wherein Eq. �12� has been invoked.
It is now clear as to why there are two thermodynamic

pressures, P and P̃, in Sec. II. For an infinitesimal surface
area �A� whose normal is perpendicular to the electric field
lines, the pressure force is P�A�. For an infinitesimal surface
area �A� whose normal is parallel to the electric field lines,

the pressure force is P̃�A�. These results describe completely

when to use the pressure P and when to use the pressure P̃.

IV. TENSION IN A FLUID CYLINDER

For a fluid dielectric cylinder of length L and cross sec-
tional area A in a uniform electric field parallel to the axis, let
us consider the work done in changing the volume V=LA via

dV = AdL + LdA . �23�

Employing the pressure tensor �Eq. �22��, one finds that both

pressures P̃ and P are required,

dW = − P̃AdL − PLdA . �24�

When a fluid is stretched at constant volume, dV=AdL
+LdA=0,

− LdA = AdL ⇒ dW = �P − P̃�AdL = �̃dL . �25�

The effective tension is thereby

�̃ = �P − P̃�A =
�E2A

4�
, �26�

wherein Eq. �12� has been invoked. Subtracting the tension
that would be present for an electric field in the vacuum, �
= �̃−�vac, yields our final result for the tension,

� =
�� − 1�E2A

4�
, �27�

in agreement with Eq. �2� of Sec. I.

V. HANGING FLEXIBLE CABLE

The water bridge consists of a flexible fluid cable that can
be suspended by its end points. As reviewed in the Appendix,
the bridge is catenary shaped with mass Mg and tension �

and is fixed at end points with the same vertical height sepa-
rated by a length L. The hanging flexible equation is given
by

y�x� = acosh�2x − L

2a
	 − cosh� L

2a
	� ,

tan  
 y��L� = − y��0� = sinh� L

2a
	 ,

a =
L

ln��1 + sin �/�1 − sin ��
,

h = − ymin = − y�x = L/2� = a�sec  − 1� . �28�

There is a slight sag h in the cable as befits the equilibrium of
the total gravitational force Mg downward and the total
Maxwell tension force 2� sin  upward, wherein  is the
angle between the cable tangent at the support and the hori-
zontal,

Mg = 2� sin  ⇒ sin  =
2��gLs

�� − 1�E2 =
E0

2

E2 , �29�

wherein Eq. �3� has been invoked. Equation �29� allows for
the theoretical computation of  in terms of experimental
dielectric constants, mass densities, water bridge lengths, and
electric fields. With regard to the electric field scale E0, one
finds

E0 =�2��gLs

� − 1
� 2.63

kV

cm
� Ls

cm
. �30�

The agreement between theory and experiment in predicting
the slight hang of the water bridge as a catenary flexible
cable, as in the above �Fig. 1�, is satisfactory.

FIG. 1. Employing the experimental example �1,2� wherein the
supports are separated by 2.5 cm and with �=1 gm /cm3, g
=980 cm /s2, �=80, and E=10 kV /cm; we plot the hanging water
bridge flexible cable. The maximum hanging dip at the center of the
water bridge is h=0.1 cm. The agreement between experiment and
theory �Eqs. �3� and �29�� is satisfactory.
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VI. HYDROSTATICS IN AN ELECTRIC FIELD

The force density on the fluid as described by the pressure
tensor �Eq. �22�� is given by

f i = − � jPji = − �iP + � j��EjEi

4�
	 . �31�

Within the bulk liquid div D=div��E�=0 so that Eq. �31�
thereby reads

f = − grad P +
�

4�
�E · grad�E . �32�

On the other hand, from Gibbs-Duhem �8� under equilibrium
isothermal conditions dT=0,

grad P = � grad � +
�

4�
�E · grad�E , �33�

so that the force per unit volume can be computed from the
chemical potential per unit mass: i.e.,

f = � grad � . �34�

Under a Newtonian gravitational field

g = − grad � , �35�

one finds the total force density equilibrium condition

f + �g = − grad�� + �� = 0, �36�

yielding the uniform chemical potential condition

� = m����,T,E2� + �� = const. �37�

To compute the electric field dependence of the chemical
potential per unit mass, one may apply a Maxwell relation to
the thermodynamic �Eq. �7�� that reads

� ��

�E
	

T,�
= −

1

4�
� �D

��
	

T,E
= −

	T

m
E , �38�

wherein the mean molecular dipole moment p=	TE defines
the polarizability 	T as in Eq. �4�. Integrating Eq. �38� com-
pletes the calculation of the chemical potential,

���,T,E� = �0��,T� −
1

2m
�

0

E2

	T���,T,F2��d�F2� ,

���,T,E� = �0��,T� −
	T��,T,E2 = 0�

2m
E2 + ¯ . �39�

The central equation �Eq. �39�� of this section implies that
the chemical potential is lowered when strong electric fields
are applied. We note in passing that a finite �albeit small�
conductivity will heat the fluid at a rate per unit volume of
��E�2. Heating rates may then be substantial in high electric
field regions. These may, in turn, be photographed by the
resulting infrared radiation.

It follows from Eq. �39� that the application of an electric
field lowers the chemical potential of films of water adsorbed
on insulating substrates such as glass that is often employed
in physical chemistry experiments. When the chemical po-

tential of a liquid film is lowered, the water film thickness
increases; e.g., in the presence of electric fields, water in a
glass beaker will have a film that appears to climb higher up
the walls than would be possible in the zero electric field
case. The fabrication of a water bridge begins by applying a
potential difference across the water contained in two neigh-
boring glass beakers that just touch each other. One expects
and finds experimentally a thickening film layer all around
the points at which the water horizontal surfaces meet the
two beaker walls. The water climbs the walls of both beakers
and near the touch point of the beakers splashes over the top.
When the hydrostatic calm after the splash begins, a bridge is
formed at the point wherein the beakers just touch. A longer
water bridge is formed after slowly separating the beakers.
Let us now turn to the hydrodynamic features of the polar
liquid flows in a strong electric field.

VII. BERNOULLI FLOWS IN STRONG FIELDS

While there has been interesting previous work �12–14�
on strong field Navier-Stokes flows, we here discuss strong
field Bernoulli flows since they appear to be more relevant to
the water bridge. In particular, when the strong field film
flows on the beaker walls it does so with virtually no viscous
friction that suggests a thin viscous boundary layer above
which a Bernoulli flow may take place. An experimental test
of this idea is explored in Sec. VIII.

We here employ the usual notion of a fluid derivative
operator,

d

dt
=

�

�t
+ �v · grad� , �40�

which expresses the time rate of change operator as seen by
an observer moving locally with the fluid velocity v. For
example, mass conservation reads �15�

d�

dt
= − � div v . �41�

Bernoulli flows are adiabatic, i.e., viscous entropy produc-
tion is ignored. Conservation of energy then amounts to a
local entropy conservation law �15�,

ds

dt
= − s div v , �42�

wherein s is the entropy per unit volume. From Eqs. �40� and
�41� it follows that

d

dt
� s

�
	 =

1

�2��
ds

dt
− s

d�

dt
	 = 0, �43�

which implies a conservation law for the entropy per unit
mass,

s� 

s

�
⇒

ds�

dt
= 0. �44�

It is here that the enthalpy per unit mass w makes its way
into the adiabatic polar dielectric liquid Bernoulli flows in an
electric field,
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� = w − Ts�,

dw = Tds� +
1

�
dP −

1

4��
D · dE , �45�

wherein Eq. �8� has been invoked. For an adiabatic flow with
ds�=0 as in Eq. �44�, Eq. �45� implies

� grad w = grad P −
1

4�
�D · grad�E . �46�

Thus, the Maxwell pressure tensor force per unit volume
�Eq. �32�� in an adiabatic Bernoulli flow reads

f = − � grad w . �47�

The dynamical equation of motions that accounts for mo-
mentum conservation then becomes

�
dv

dt
= f + �g ,

dv

dt
= − grad�w + �� , �48�

wherein the gravitational field �Eq. �35�� has been taken into
account. Vorticity,

� = curl v , �49�

makes an appearance in virtue of the acceleration identities,

dv

dt
=

�v

�t
+ �v · grad�v ,

dv

dt
=

�v

�t
+ � � v +

1

2
grad�v2� , �50�

which allow us to write Eq. �48� as

�v

�t
+ � � v = − grad�w + � +

1

2
v2	 . �51�

Employing the curl of Eq. �51� and using Eq. �49� imply the
equation of motion for vorticity. It is

��

�t
+ curl�� � v� = 0,

d�

dt
= �� · grad�v − ��div v� . �52�

If at a given initial time the Bernoulli flow is irrotational, i.e.,
�=0, then at all later times in accordance with Eq. �52� the
flow will remain irrotational. Equation �51� then reads �15�

v = grad � ,

��

�t
+

1

2
�grad ��2 + w + � = 0,

�v

�t
= − grad�w + � +

1

2
v2	 . �53�

The complete set of equations for a steady state Bernoulli
flow in a strong electrostatic field E and in a uniform gravi-
tational field g in the negative z direction then follows from
Eq. �53� as

curl E = 0,

div D = div��E� = 0,

w�s�,P,E� + 1
2 �v�2 + gz = const. �54�

The only difference between the normal steady state Ber-
noulli fluid flows in Eq. �54� and the usual case for E=0
resides in the electric field contributions to the enthalpy per
unit mass w. It is here useful to introduce a new thermody-
namic potential per unit mass � obeying

w = � +
P

�
, �55�

d� = Tds� +
P

�2d� −
1

4��
D · dE ,

��s�,�,E2� = �0�s�,�� −
1

8��
�

0

E2

��s�,�,F2�d�F2� ,

��s�,�,E2� = �0�s�,�� −
��s�,�,0�E2

8�
+ ¯ . �56�

For an adiabatic �ds�=0� incompressible �d�=0� steady
state Bernoulli flow, Eqs. �54�–�56� imply the central result
of this section,

P +
1

2
�v2 + �gz −

�E2

8�
= const. �57�

In the case that E=0, the Bernoulli equation �Eq. �41�� indi-
cates that water under the influence of gravity alone flows
down a wall and may splash at the bottom. On the other
hand, if the electric field on the bottom of the wall is negli-
gible and the electric field on the top of wall is large, then a
polar dielectric fluid can crawl up a wall and may splash at
the top. Such top splash processes on both of two beakers
has been a precursor for building a water bridge.

VIII. CONCLUSIONS

We have discussed the water bridge as a flexible cable
made up of pure de-ionized water. The resulting electric
fields within the de-ionized water flexible cable maintain a
tension that sustains the water against the downward force of
gravity. A detailed calculation of the water bridge tension
was provided in terms of the Maxwell pressure tensor in a
dielectric fluid medium. There has been considerable work
done on the microscopic structure of water. The conventional
microscopic models �13,14� allow for strongly fluctuating
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electric dipole moments but do not include the coupling of
these moments to the radiation electromagnetic fields. When
model oscillating dipole moments are allowed to radiate
�16–20�, then it has been shown that ferroelectric domains
are formed.

Considering water as an electric ferrofluid subject to high
electric fields allows for structures that are more than just a
bit unusual. An electric field directed parallel to the water
cylinder axis can create a tension as in a stretched rubber
band but with different causes. In the case of the rubber
band, the tension arises from the high entropy of random
knotted polymer chains. In a polar liquid acting as a ferrof-
luid, the tension arises out of long ordered chains of low
entropy aligned coherent dipolar domains.

The resulting tension in the water bridge sustains a siphon
between two beakers without the requirement that a new ex-
ternal siphon tube structure made up of other materials be
introduced. The Bernoulli flow that can be tested in the labo-
ratory is in the observation of siphon �inverted U-tube� os-
cillations. Let � represents the effective flow length of the
path from across the risen water surface in one beaker up the
beaker wall across the bridge and down the other beaker wall
to the other risen water surface. The frequency f of siphon
oscillations employing a simple Bernoulli argument is given
by

f =
1

�
� g

�
�

10 Hz
��/cm

. �58�

Even more important is the quality factor of the siphon os-
cillator. If the oscillation lasts a very long time before decay-
ing, as does in a superfluid U-tube oscillation �21�, then a
strong experimental case can be made for an ideal film flow
with very small viscous damping.

APPENDIX: CATENARY BRIDGE

To compute the catenary shape y�x� of a uniform in mass
density �̂ hanging flexible cable, one may invoke the free
energy minimum principle. �i� The free energy of the cable is
the sum of a gravitational term and a tension term,

Fcable = �̂g� yds + �� ds ,

Fcable = �
0

L

F�y�,y�dx ,

F�y�,y� = ��̂gy + ���1 + y�2, �A1�

wherein ds=�dx2+dy2=�1+y�2dx. The minimum free en-
ergy principle then yields the Euler-Lagrange equation,

d

dx
� �F

�y�
	 = � �F

�y
	 with y�0� = y�L� = 0. �A2�

Integrating Eq. �A2� along the string yields

�
0

L � �F

�y
	dx = �g

̂� ds = Mg ,

�
0

L d

dx� �F

�y�
	dx = 2� sin  
 �� y��L�

�1 + y��L�2
−

y��0�
�1 + y��0�2	 ,

�A3�

wherein tan =y��L�=−y��0� has been invoked. The overall
mechanical equilibrium �Eq. �29�� follows from Eq. �A3�. �ii�
The tension at the minimum point is the constant

�� = F − y�
�F

�y�
=

�̂gy + �

�1 + y�2
= � cos  . �A4�

The first-order differential equation �Eq. �A4�� has the so-
lution as given in Eq. �28�. The length of the catenary curve
is

Ls = �
0

L

�1 + y�2dx = 2a sinh� L

2a
	 = 2a tan  , �A5�

so that

Ls

L
=

2 tan 

ln��1 + sin �/�1 − sin ��
. �A6�
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